A Convergent and Essential Interneuron Pathway for Mauthner-Cell-Mediated Escapes
نویسندگان
چکیده
The Mauthner cell (M-cell) is a command-like neuron in teleost fish whose firing in response to aversive stimuli is correlated with short-latency escapes [1-3]. M-cells have been proposed as evolutionary ancestors of startle response neurons of the mammalian reticular formation [4], and studies of this circuit have uncovered important principles in neurobiology that generalize to more complex vertebrate models [3]. The main excitatory input was thought to originate from multisensory afferents synapsing directly onto the M-cell dendrites [3]. Here, we describe an additional, convergent pathway that is essential for the M-cell-mediated startle behavior in larval zebrafish. It is composed of excitatory interneurons called spiral fiber neurons, which project to the M-cell axon hillock. By in vivo calcium imaging, we found that spiral fiber neurons are active in response to aversive stimuli capable of eliciting escapes. Like M-cell ablations, bilateral ablations of spiral fiber neurons largely eliminate short-latency escapes. Unilateral spiral fiber neuron ablations shift the directionality of escapes and indicate that spiral fiber neurons excite the M-cell in a lateralized manner. Their optogenetic activation increases the probability of short-latency escapes, supporting the notion that spiral fiber neurons help activate M-cell-mediated startle behavior. These results reveal that spiral fiber neurons are essential for the function of the M-cell in response to sensory cues and suggest that convergent excitatory inputs that differ in their input location and timing ensure reliable activation of the M-cell, a feedforward excitatory motif that may extend to other neural circuits.
منابع مشابه
Identification of motoneurons and interneurons in the spinal network for escapes initiated by the mauthner cell in goldfish.
We used intracellular recording and staining techniques to study the spinal circuitry of the escape behavior (C-start) initiated by the Mauthner axon (M-axon) in goldfish. Simultaneous intracellular recordings from one or both M-axons and a spinal neuron, followed by HRP labeling of the spinal cell, show that each M-axon makes monosynaptic, chemical excitatory synapses onto 2 populations of ips...
متن کاملConvergent chemical and electrical synaptic inputs from proprioceptive afferents onto an identified intersegmental interneuron in the crayfish.
Synaptic transmission between proprioceptive afferents from a chordotonal organ in the tailfan of the crayfish and an identified ascending interneuron, interneuron A, in the terminal abdominal ganglion was analyzed. Interneuron A is part of a disynaptic pathway from primary afferent neurons to the lateral giant interneuron involved in producing the characteristic ballistic escape behavior of cr...
متن کاملAntagonistic regulation of convergent extension movements in Xenopus by Wnt/β-catenin and Wnt/Ca2+ signaling
Convergent extension movements are the main driving force of Xenopus gastrulation. A fine-tuned regulation of cadherin-mediated cell-cell adhesion is thought to be required for this process. Members of the Wnt family of extracellular glycoproteins have been shown to modulate cadherin-mediated cell-cell adhesion, convergent extension movements, and cell differentiation. Here we show that endogen...
متن کاملImmunomodulatory activity of geranial, geranial acetate, gingerol, and eugenol essential oils: evidence for humoral and cell-mediated responses
Objective: The immunomodulatory effect of geranial, geranial acetate, gingerol, and eugenol essential oils were evaluated by studying humoral and cell-mediated immune responses. Materials and Method: The essential oils were evaluated for immunomodulatory activity in in vivo studies, using rats as the animal model. The essential oils were tested for hypersensitivity and hemagglutination reaction...
متن کاملNanocurcumin-Mediated Down-Regulation of Telomerase Via Stimulating TGFβ1 Signaling Pathway in Hepatocellular Carcinoma Cells
Background: Curcumin, extracted from turmeric, represents enormous potential to serve as an anticancer agent. Telomerase is viewed as a prominent molecular target of curcumin, and transforming growth factor-β1 (TGFβ1) has proven to be a major inhibitory signaling pathway for telomerase activity. In the current study, we aimed to explore suppressive effects of nanocurcumin on telomeras...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 25 شماره
صفحات -
تاریخ انتشار 2015